为什么三星、台积电的5纳米,还干不过英特尔的12纳米?
这就是双方不同的工艺标准,导致英特尔和三星、台积电看似存在差距,实际上,是三星、台积电在标准上搞的鬼。
光刻法的极限工艺,就在12纳米附近,毕竟光刻要靠深紫外光和蚀刻,这是紫外光的物理性质决定的。
而纺织法的极限,取决于纳米线的横截直径,理论上单原子的纳米线,横截直径在0.5纳米左右。
不过黄修远明白,0.5纳米的芯片工艺,现阶段基本不可能实现,单单是一个量子隧穿效应,就足以让芯片报废。
为什么人类要追求更加小的芯片工艺?
答案是能耗。
更加精细的晶体管,可以有效的降低芯片的能耗。
如果单纯的追求运算力的提升,其实可以采用超算的刀片服务器搭建方式,不断增加芯片的数量。
在商业应用上,运算力虽然是一个大指标,但是真正的核心因素,是单位运算力的能耗,即我们常说的能效比。
假如,有甲乙两款芯片,其浮点运算力都是每秒10亿次,甲芯片采用28纳米工艺,而乙芯片采用22纳米工艺,两者的单位能耗是,通常是甲高于乙。
或许个人用户感觉不明显,但是那些互联网大厂,一年要付几亿乃至几十亿电费,就不得不考虑能耗问题了。
这就是为什么,璃龙1诞生后,各大互联网公司不得不采购的原因之一,其中就有能耗的考虑。
黄修远看着眼前的芯片纺织机,12纳米工艺虽然可以生产芯片,但是速度却下降得厉害,平均每秒只能加工两三千个晶体管。
比起速度惊人的缁衣—1、缁衣—2,缁衣—4的速度明显太低了。
“修远,我打算将第二半导体实验室的立体工艺引入12纳米工艺上,你怎么看?”陆学东提议道。
放下手上的圆珠笔,黄修远思考了一会:“第二半导体实验室的立体工艺,应该没有成熟吧?”
“是的,散热是一个大问题。”陆学东无奈的摊摊手。
纺织法在立体芯片上,基本天然的优势,但是立体的多层芯片,并不是随随便便可以叠加的。
本来芯片在工作过程中,就发热非常严重,一旦采用多层叠加,那芯片的工作时,产生的热量将更加多。
这种工作热量,对于表面上下两层和边缘,还影响不大,但是中间的那些芯片层,热量会不断积累,导致芯片使用寿命迅速下降,甚至会直接烧坏芯片。
目前的16纳米工艺,可以叠加5层芯片,超过散热就是一个问题。
而工作电压更