正文 第322章 NP完全问题的启示?

陈舟见此,笑着摇了摇头。

他觉得赵琦琦和朱明理,已经彻底达到了放飞自我的境界。

至于李礼,倒没有放飞自我。

一来是他的性格比较内敛,二来,他压根不具备放飞自我的条件好不好!

自从他跟李静在一起后,就一直被李静管着……

重新将目光放在电脑网页上,陈舟滑动鼠标滚轮的手,忽的一顿。

倒不是因为眼前的内容,而是他忽然想起来,刚才在朱明理手机上看到的那个头像,怎么那么熟悉?

“又是张教授?”

陈舟不由得有些哭笑不得,先前的校园网上的事,他还记得呢。

但没想到,这位张中原教授,居然这么喜欢混校园网。

难道和学生打成一片,才能证明自己一直是年轻的自己吗?

也不一定吧?至少那脑袋就不像了……

“设计一种五边形,用它铺满一个平面而不留下空隙,有多少种这样的五边形?”

这是“平面密铺”的问题,也是一直困扰数学界的难题。

密铺理论的应用有很多,像最简单的堆放物体时,如何最大利用空间,节省成本。

在晶体学中,如何优化晶体结构,也属于密铺理论的应用范畴。

但是,因为正五边形的每个内角为108度,而非360度的因数,所以无法密铺平面,只能用变形的五边形挑战该问题。

而11件数学界的大事之一,便是数学家终于找到了第15种五边形。

这也是陈舟所感兴趣的两件事之一。

陈舟饶有兴趣的看着网页上15个被五边形铺满的图案。

五边形问题是大多数学家所感兴趣的几何学领域,因为它是唯一一种尚未被完全理解的形状。

而这第15种五边形,也是30年来新发现的首个满足条件的五边形。

陈舟思索了一下,便滑动鼠标,看向下一个感兴趣的事件了。

现在的他,单纯的只是兴趣,并不打算立即买入几何学的领域。

至于,陈舟所感兴趣的另一件事,便是图同构问题的进展。

这在复杂性理论中一直是一个特殊问题。

简单来说,就是一个正五边形或者是一个五角星,是否属于同构,也就是点之间一一对应的问题。

在这件事的描述上,是关于芝加哥大学的Babai教授在

为优化阅读体验,本站内容均采用分页显示,请点击下一页继续阅读! 第1页 / 共2页

相关阅读: 幻城浮屠卑微备胎人设翻车后(快穿)穿梭无限的数码骑士帝神通鉴孤岛谍战祁先生你被拉黑了穿成龙傲天后我开启了万人迷光环开局召唤一只小骷髅漫威里的灵能百分百返回2006我错绑了男主的万人迷系统超能魔法高校的劣等生灵气复苏我在玩私服末世重生之带娃修行最强玄宗系统[综英美]改造基地建设中神医弃女双重人格[无限]季汉长存穿成赘婿文男主的前妻