函数方程。
最后一个,则是其平凡零点分布在直线Re=1/2上。
前两个很容易用初等方法证明,而第三个,就是著名的黎曼假设了。
而到如今,这一函数,也通常被称之为黎曼ζ函数。
也是某一类函数的特殊情形,这一类函数则被称之为L函数。
L函数具有类似上述三个条件的性质,同时它们在特殊点的值,有类似欧拉的表达式。
别觉得这一模糊的表述,看着像初等代数一样。
实际上,它的含义深刻无比。
至于原因嘛……
它包含了米国克雷研究所在21世纪初提出的七个百万奖金的千禧难题中的三个——贝赫和斯维讷通-戴尔猜想、霍奇猜想和黎曼猜想。
除此之外,还有其他许多著名的猜想。
从某种意义上来说,L函数的这一表述背后,隐藏了一系列无比宏伟的数学结构。
这些结构的背后,不仅仅是问题本身的涵义,还包含着许多强有力的解决工具。
此外,L函数大体上有两种不同起源的L函数,分别是Motivic
L函数和自守L函数。
阿廷L函数,也就包含在这其中。
而Motivic
L函数则起源于代数数论和代数几何。
众所周知,代数数论的一个核心问题,是求解整数系数的一元多项式方程。
对于每一个素数p,都可以考虑模p的情形,并得到有限域上的一元多项式方程。
原则上来说,可以很容易的求解。
而模p的解,如何联系于整数解,又是数论的一个重要问题了。
高斯和欧拉发现的著名二次互反律,就是这一问题,在一元二次多项式的特殊情形的解。
后来,随着20世纪初的类域论这一重要发现,对于更大一类的一元多项式方程,解决了这一问题。
但是这一类方程并不是由多项式的次数限定的,而是取决于方程的内蕴对称性。
更加精确地说,取决于它的伽罗瓦群。
不得不说,数学的发展,真的是靠某些大神的。
不止于高斯欧拉黎曼,伽罗瓦在19世纪初的革命性工作,就是首次引进了群论。
并且利用群论来精确地度量多项式的对称性。
也因此,数学家们第一次能够绕开繁琐
为优化阅读体验,本站内容均采用分页显示,请点击下一页继续阅读! 第2页 / 共3页