正文 第426章 四种途径

在“陈氏定理”上画了个圈。

陈舟在想,也许有一天,也许用不了多久。

“陈氏定理”会变成完整的哥德巴赫定理。

当然,从某种意义来说,哥德巴赫定理,也可以称之为“陈氏定理”。

至于这个“陈”,自然就是陈舟的陈了。

收回这个还算遥远的思绪,陈舟的注意力,再次集中到哥德巴赫猜想身上。

从以往的研究来看,对哥猜的研究途径,分为四种。

分别是殆素数、例外集合、小变量的三素数定理,以及几乎哥德巴赫问题。

殆素数就是素因子个数不多的正整数。

设N是偶数,虽然不能证明N是两个素数之和,但足以证明它能够写成,两个殆素数的和。

也就是A+B。

其中,A和B的素因子个数,都不太多。

也就是陈舟刚写下的,哥猜的命题。

而“a+b”命题的最新进展,便是陈老先生的“1+2”了。

至于,终极奥义的“1+1”,则遥遥无期。

在殆素数这一方向上的进展,都是用筛法所得到的。

可是,陈老先生把筛法用到极致,也只是停留在了“1+2”上面。

所以,很多数学家也认为,现在的研究,很难再突破陈老先生在筛法上面的运用。

这也是这一方向的研究,这么长时间停滞不前的最大原因。

在没有找到更合理,或者说能够进一步发挥筛法作用的工具之前。

“1+1”的证明,始终不会有较大的突破。

这一观点,陈舟也是认同的。

然而,一个被运用到极致的工具,想要再突破,谈何容易?

对于一个成熟的数学工具来说,新的数学思想的引入,也会变得更为困难。

但好在,陈舟在研究克拉梅尔猜想时,或多或少,或有意或无意的,就搞出来了分布结构法。

最初的分布结构法,就是糅合了筛法、圆法等等数学思想的一个工具。

所以,陈舟的想法里,他突破大筛法限制的关键点,就在分布结构法上面。

草稿纸上,陈舟把分布结构法,单独的写在了右边。

殆素数的方法,则是在左边。

而殆素数方

为优化阅读体验,本站内容均采用分页显示,请点击下一页继续阅读! 第1页 / 共2页

相关阅读: 戏精的自我修养(快穿)路人女主是魔王上课不睡觉顶流天天脑补我是他娇妻[综]离职救世主的咒术日常反派a装o后把我咬了烂片之王[娱乐圈]你的老公没救了暴君分化成O以后校花女主暗恋我我在逃生游戏装NPC的日子穿书后被反派喂养了全修真界为恶毒蠢货打起来了穿回来的鲛人小O[星际]马甲之王全世界都觉得他有病结婚后丈夫说他是五条悟[咒术回战]公费恋爱[娱乐圈]太宰小姐的异界之旅满级大佬掉马后