正文 第426章 四种途径

法的下面,就是例外集合。

所谓的例外集合,指的就是在数轴上,取定大整数x。

再从x往前看,寻找使得哥德巴赫猜想不成立的那些偶数。

这些偶数,也就被称为例外偶数。

这一思路的关键就是,不管x多大,只要x之前,只有一个例外偶数。

而这个例外偶数就是2,也就是只有2使得猜想是错的。

而2,大家都懂的。

那么,就能说明这些例外偶数的密度是零。

也就证明了,哥德巴赫猜想对于几乎所有的偶数成立。

这条思路的研究,在华国可能没有那么著名。

但是从世界上来看,维诺格拉多夫的三素数定理一发布,在例外集合这一途径上,就同时出现了四个证明。

其中,就包括华老先生的著名定理。

说来有趣的一件事是。

民科们,经常会有人宣称自己证明了哥德巴赫猜想在概率意义下是对的。

可实际上,他们就是“证明”了例外偶数是零密度。

至于这个结论嘛……

华老先生早在60年前,就已真正证明了出来。

所以说,有时候真不能听民科瞎咋呼。

就拿陈舟自己来说,他要是在乎民科们的声音。

那,塞满邮箱的那些民科们发来的邮件,就真的够他头大的了。

“如果偶数的哥德巴赫猜想正确,那么奇数的猜想也正确……”

陈舟在第三种研究途径“小变量的三素数定理”后面,开始边思考,边写下这条途径的研究思路。

【已知奇数N,可以表示成三个素数之和,假如又能证明这三个素数中,有一个非常小……】

在这条途径上,一直研究下去的人,也是华国著名的数学家潘老先生。

如果说第一个素数,可以总取3,那么也就证明了哥猜。

潘老先生就是沿着这个思想,从25岁时,开始研究有一个小素变数的三素数定理。

这个小素变数,不超过N的θ次方。

而研究目标,就是要证明θ可以取0。

也就是这个小素变数有界,从而推出偶数的哥德巴赫猜想。

潘老先生首先证明了θ可以取1/4。

相关阅读: 三国网游之孤岛新纪元从现在开始当渣男近战狂兵医路无阻这个宇智波过于谨慎当公主遇到重生万古神帝池瑶你有种就杀了我灵核战纪殿下的团宝小青梅由我贪恋着迷白骨大圣失业后我回去继承亿万家产大理寺卿的宠妻日常洪主重生女配洗白日常近战狂兵叶军浪苏红袖许卿繁华盛世宠臣的一品福妻黑化夫君又在装可怜